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CMZ2 Model Development

Two model versions developed
— CM2.0 and CM2.1

 Atmosphere
— 2°,24 vertical levels

— RAS, Locke PBL, diurnal, ....
— 2.0="B" grid core, 2.1=finite volume core

Ocean
— 19, 50 vertical levels
— Free surface, tidal mixing, tri-polar grid, ....

Sea lce
— Multiple ice thicknesses, complex rheology

Land Surface

— Rivers, changing land cover types, ...
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IPCC Fourth Assessment Report

Keith Dixon

* Accomplishments
 Level of Effort

* Model Intercomparison

* Model Developments for the IPCC Fifth
Assessment Report




GFDL’'s CM2.x Coupled Climate Models: Efforts in
Support of the IPCC AR4 & the US CCSP

In 2004, following several years of intensive
development efforts, a new family of GFDL climate
models (the CM2.x family) was first used to conduct
climate research.

The CM2.x models are being applied to decadal-to-
centennial time scale issues (including multi-century
control runs, climate of the 20th century simulations, &
climate change projections), as well as to seasonal-to-
iInterannual problems, such as El Nifio research and

forecasts.




GFDL CM2.x for the IPCC &
CCSP

VY (http://www.ipcc.ch) iy
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE Ry

Every 5 or 6 years, an international group of scientists assemble a report
documenting the state of scientific knowledge related to climate change.
IPCC reports are ratified by ~180 member nations.

GFDL has been a prime player in the 3 previous assessment reports, and will
be in the ongoing IPCC 4th Assessment Report (AR4) to be published in
2007. Two new global GFDL CM2.x climate models were developed for this

' P,

’ The US CCSP is a presidential

initiative that seeks to integrate

US Climate Change E'“E federal research on climate change.

Science Program More than 20 synthesis &
www.climatescience.gov assessment reports on key topics

relevant to decision makers are
planned.

“best available science”
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Code Development & Model Configuration
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Tropospheric CO2
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Code Development & Model Configuration

S - land sea ice
CM2.0 CM2.1
dob: spring ‘04 dob: fall ‘04
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Code Development & Model Configuration

atmos ocean land sea ice
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Code Development & Model Configuration

atmos ocean land Sea 18
CM2.0 CM2.1
dob: spring ‘04 dob: fall ‘04
done: Oct ‘04 done: Jan ‘05

GFDL
In-House
Research &
Model
Evaluations
(part of GFDL'’s
“traditional”
science)

*** Standardization of Output Files ***

Share CM2.x
output with
authors

of US Climate
Change Science

Program (US

CCSP) reports

Ship CM2.x model

output to IPCC/ Making CM2.x model
PCMDI archive in output & documentation
Livermore CA accessible via the
(~3TB CM2.x data GFDL Data Portal

available) : :
>300 IPCC WGH (no registration)
registered users ~10tb available



Examples of “traditional” GFDL work:
Increase scientific understanding; reduce uncertainties

Simulation of Sahel drought in the 20th and
21st centuries

I. M. Held**, T. L. Delworth*, J. Lu®, K. L. Findell*, and T. R. Knutson*

*Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, *University Corporation for Atmospheric
P.O. Box 308, Princeton, NJ 08542
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Observed late 20" century
Sahel drought

1950-2000 trend (JAS) Sahel rainfall time series (JAS)
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1950-2000 trends Iin observed and
simulated precipitation (JAS)
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20t and 21st century Sahel rainfall

CM2
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215t century Sahel rainfall in CM2
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A1B response
2070-2100 minus 1950-2000
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Summary

« GFDL models (AM2, CM2) capture the late 20t
century Sahel drought. The drought simulated by
the coupled model can largely be attributed to
anthropogenic forcing: GHG and aerosols

« CM2 predicts further aridity in Sahel in the 215t
century, a scenario in concert with what is
expected from the observed/simulated SST-
Sahel rainfall relationship in the 20" century;




A Note of Caution

“ We advise against basing assessment of future climate change
in the Sahel solely on the results from any model in isolation.

In the interim, given the quality of CM2’s simulation of the spatial
structure and time evolution of rainfall variations in the Sahel in the 20th
century, we believe that its prediction of a dramatic future drying trend

. . . . J)
should be considered seriously as a possible future scenario.

—— Held et al., 2005, PNAS




Examples of “traditional” GFDL work:
Increase scientific understanding; reduce uncertainties

Surface albedo feedbacks in GFDL
and other IPCC AR4 models
— M. Winton

Local contribution
to global surface
feedback (0.25 to
0.3) in 1% runs.
Units (w/m**2 °K)




In support of CCSP:

Reconciling models, radiosondes and satellites (MSU)

Amplification of Surface
Temperature Trends and Variability

in the Tropical Atmosphere

B. D. Santer,’* T. M. L. Wigley,? C. Mears,? F. J. Wentz,?
S. A. Klein," D. J. Seidel,* K. E. Taylor,” P. W. Thorne,®
M. F. Wehner,® P. ] Gleckler,’ J. S. Boyle,1 W. D. Collins,?
K. W. Dixon,” C. Doutriaux,” M. Free,* Q. Fu,® J. E. Hansen,’
G. S. Jones,S R. Ruedy,9 T. R. Karl,"® J. R. Lanzante,” G. A. Meehl,?
V. Ramaswamy,7 G. Russell,® G. A. Schmidt®

The month-to-month variability of tropical temperatures is larger in the tro-
posphere than at Earth’s surface. This amplification behavior is similar in a range
of observations and climate model simulations and is consistent with basic
theory. On multidecadal time scales, tropospheric amplification of surface
warming is a robust feature of model simulations, but it occurs in only one
observational data set. Other observations show weak, or even negative, ampli-
fication. These results suggest either that different physical mechanisms control
amplification processes on monthly and decadal time scales, and models fail to
capture such behavior; or (more plausibly) that residual errors in several ob-
servational data sets used here affect their representation of long-term trends.

www.sciencemag.org SCIENCE VOL 309 2 SEPTEMBER 2005




S| Prediction

Forecasts started from each
month (Jan. in this case).

Bias of raw forecasts :>

Correlation of forecast with
observations (red) vs.
persistance (blue).

<
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NINO3.4 SSTA (°C) fests from exp24 run_det
APR ICs from exp22
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NINO3.4 SSTA (°C) fests from exp24 run_det
JUL ICs from expZ2
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NINO3.4 SSTA (°C) fests from exp24 run_det
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CM2 & Southern Ocean
Diveraence

Elements of the overturning circulation in the Southern Ocean
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Schematic diagram of the overturning circulation in the Southern Ocean (Speer et al., 2000, J. Phys. Oceanogr.,
30, 3212-3222). AV/ID5/0103 (MR



Southern Ocean Intercomparison

Total-;X Maxrx Latitude of

ACC (Sv) dp/dy

1012N (N/m?) Max T,
"> | OBSERVED ~135 0.58 6.5 0.161 52.4
CSIRO-Mk3.0 336 0.85 7.8 0.207 51.3
GISS-ER 266 0.62 4.3 0.107 46.0
UKMO-HadCM3 223 0.97 6.4 0.163 51.3
GISS-AOM 202 0.38 2.9 0.166 43.5
UKMO-HadGEM1 199 0.65 7.1 0.190 52.5
MIROC3.2(medres) 190 0.43 5.3 0.184 46.0
> | GFDL-CM2.1 135 0.58 61 | 0.162 | 51.0
MIROC3.2(hires) 125 0.49 6.3 0.175 46.5
> | GFDL-CM2.0 113 0.56 4.5 | 0.149 46.0
CCCMA-CGCM3.1(T63) 106 0.43 7.2 0.192 48.8
BCCR-BCM2.0 105 0.53 NA NA 48.8
MRI-CGCM2.3.2a 94 0.40 5.6 0.157 48.8
CCCMA-CGCM3.1(T47) 93 0.27 5.9 0.180 46.4
INM-CM3.0 80 0.71 6.0 0.172 48.0
IAP-FGOALS1.0g 75 0.39 4.8 0.138 48.8
CNRM-CM3 54 0.31 2.4 0.106 46.0
IPSL-CM4 34 0.18 2.7 0.160 41.8
GISS-EH -6 0.43 3.6 0.096 46.0




Framework to consider S. Ocean simulation
(things to get “right”)

Strength of westerlies over Drake Passage latitudes.
Surface buoyancy fluxes around Antarctica.

T,S properties and volume of modeled NADW in
southern Atlantic.

Latitude & strength of maximum S.H. westerlies.

The uptake of heat and carbon by the ocean is greatly
affected by the Southern Ocean, where much water mass
transformation occurs. Large scale patterns of surface
climate change also are influenced by these processes.

This framework helps one categorize and analyze coupled
climate model simulations of the Southern Ocean.




Getting the Southern Ocean “right”
— S0 What?

* Big impact on transient climate response

* Heat uptake
— More heat uptake reduces SAT response
— More heat uptake increases sea level rise

« Carbon and other tracer uptake
— More carbon uptake reduces SAT response

— More carbon uptake makes water more
alkaline

@




Importance of Southern simulation
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Looking ahead to IPCC AR5

In going from the previous generation of GFDL global
coupled climate models to the current CM2 models we ...

« improved model resolution (ocean & atmosphere, horizontal &
vertical)

« developed more sophisticated physical parameterizations in all
model components & included more radiative forcing agents

« abandoned flux adjustments
* implemented better numerics
« enhanced on-line diagnostics, etc.

...always mindful of resource constraints.

2 Critical Resources:
People with Expertise & Computers
(requires both Brain Power & Compute Power)

X/




Looking ahead to IPCC AR5

The next generation of GFDL coupled climate models

may include...
« improvements in model resolution (vertical & horizontal)*

« more sophisticated treatment of biogeochemical processes (toward
a more complete Earth system model)*

« continued development of physical parameterizations, treatment of
radiative forcing agents, etc.

« Consideration of different model components (ocean, atmosphere,
land surface, sea ice)

*(computer intensive)
...still, always mindful of resource constraints.

Given computer resources, we need to be able to
integrate X model years within Y calendar months.

X/
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Summary

GFDL continuing its efforts to develop state of
the art climate models.

GFDL successful in its model develop efforts for
AR4 and other activities.

A huge amount of resources (people, computer,
storage) needed to support this effort.

Conflicting directions for next model
— Resolution

— Ensemble members
— Additional components (geo-bio-chemistry)




